Module files
Sync client for files workflow.
upload
def upload(paths: List[Path],
api_key: Optional[str] = None,
api_url: Optional[str] = None,
workspace_name: str = DEFAULT_WORKSPACE_NAME,
write_mode: WriteMode = WriteMode.KEEP,
blocking: bool = True,
timeout_s: Optional[int] = None,
show_progress: bool = True,
recursive: bool = False,
desired_file_types: Optional[List[str]] = None,
enable_parallel_processing: bool = False,
safe_mode: bool = False) -> S3UploadSummary
Upload a folder to deepset AI Platform.
Arguments:
paths
: Path to the folder to upload. If the folder contains unsupported file types, they're skipped. deepset AI Platform supports csv, docx, html, json, md, txt, pdf, pptx, xlsx, xml.api_key
: deepset API key to use for authentication.api_url
: API URL to use for authentication.workspace_name
: Name of the workspace to upload the files to. It uses the workspace from the .ENV file by default.write_mode
: Specifies what to do when a file with the same name already exists in the workspace. Possible options are: KEEP - uploads the file with the same name and keeps both files in the workspace. OVERWRITE - overwrites the file that is in the workspace. FAIL - fails to upload the file with the same name.blocking
: Whether to wait for the files to be uploaded and displayed in deepset AI Platform.timeout_s
: Timeout in seconds for theblocking
parameter.show_progress
: Shows the upload progress.recursive
: Uploads files from subfolders as well.desired_file_types
: A list of allowed file types to upload. If not provided, all files are uploaded.enable_parallel_processing
: IfTrue
, deepset AI Platform ingests files in parallel. Use this to speed up the upload process. Make sure you are not running concurrent uploads for the same files.safe_mode
: IfTrue
, disables ingesting files in parallel.
download
def download(workspace_name: str = DEFAULT_WORKSPACE_NAME,
file_dir: Optional[Union[Path, str]] = None,
name: Optional[str] = None,
odata_filter: Optional[str] = None,
include_meta: bool = True,
batch_size: int = 50,
api_key: Optional[str] = None,
api_url: Optional[str] = None,
show_progress: bool = True,
timeout_s: Optional[int] = None,
safe_mode: bool = False) -> None
Download a folder to deepset AI Platform.
Downloads all files from a workspace to a local folder.
Arguments:
workspace_name
: Name of the workspace to upload the files to. It uses the workspace from the .ENV file by default.file_dir
: Path to the folder to download.name
: Name of the file to odata_filter by.odata_filter
: odata_filter by file meta data.include_meta
: Whether to include the file meta in the folder.batch_size
: Batch size for the listing.api_key
: API key to use for authentication.api_url
: API URL to use for authentication.show_progress
: Shows the upload progress.timeout_s
: Timeout in seconds for the API requests.safe_mode
: IfTrue
, disables ingesting files in parallel.
upload_texts
def upload_texts(files: List[DeepsetCloudFile],
api_key: Optional[str] = None,
api_url: Optional[str] = None,
workspace_name: str = DEFAULT_WORKSPACE_NAME,
write_mode: WriteMode = WriteMode.KEEP,
blocking: bool = True,
timeout_s: Optional[int] = None,
show_progress: bool = True,
enable_parallel_processing: bool = False) -> S3UploadSummary
Upload texts to deepset AI Platform.
Arguments:
files
: List of DeepsetCloudFiles to upload.api_key
: deepset API key to use for authentication.api_url
: API URL to use for authentication.workspace_name
: Name of the workspace to upload the files to. It uses the workspace from the .ENV file by default.write_mode
: Specifies what to do when a file with the same name already exists in the workspace. Possible options are: KEEP - uploads the file with the same name and keeps both files in the workspace. OVERWRITE - overwrites the file that is in the workspace. FAIL - fails to upload the file with the same name.blocking
: Whether to wait for the files to be uploaded and listed in deepset AI Platform.timeout_s
: Timeout in seconds for theblocking
parameter.show_progress
: Shows the upload progress.enable_parallel_processing
: IfTrue
, deepset AI Platform ingests files in parallel. Use this to speed up the upload process. Make sure you are not running concurrent uploads for the same files.
Example:
from deepset_cloud_sdk.workflows.sync_client.files import upload_texts, DeepsetCloudFile
upload_texts(
api_key="<deepsetCloud_API_key>",
workspace_name="<default_workspace>", # optional, by default the environment variable "DEFAULT_WORKSPACE_NAME" is used
files=[
DeepsetCloudFile(
name="example.txt",
text="this is text",
meta={"key": "value"}, # optional
)
],
blocking=True, # optional, by default True
timeout_s=300, # optional, by default 300
)
upload_bytes
def upload_bytes(files: List[DeepsetCloudFileBytes],
api_key: Optional[str] = None,
api_url: Optional[str] = None,
workspace_name: str = DEFAULT_WORKSPACE_NAME,
write_mode: WriteMode = WriteMode.KEEP,
blocking: bool = True,
timeout_s: Optional[int] = None,
show_progress: bool = True,
enable_parallel_processing: bool = False) -> S3UploadSummary
Upload any supported file types to deepset AI Platform. These include .csv, .docx, .html, .json, .md, .txt, .pdf, .pptx, .xlsx and .xml.
Arguments:
files
: List of DeepsetCloudFilesBytes to upload.api_key
: deepset API key to use for authentication.api_url
: API URL to use for authentication.workspace_name
: Name of the workspace to upload the files to. It uses the workspace from the .ENV file by default.write_mode
: Specifies what to do when a file with the same name already exists in the workspace. Possible options are: KEEP - uploads the file with the same name and keeps both files in the workspace. OVERWRITE - overwrites the file that is in the workspace. FAIL - fails to upload the file with the same name.blocking
: Whether to wait for the files to be uploaded and listed in deepset AI Platform.timeout_s
: Timeout in seconds for theblocking
parameter.show_progress
: Shows the upload progress.enable_parallel_processing
: IfTrue
, deepset AI Platform ingests files in parallel. Use this to speed up the upload process. Make sure you are not running concurrent uploads for the same files.
get_upload_session
def get_upload_session(
session_id: UUID,
api_key: Optional[str] = None,
api_url: Optional[str] = None,
workspace_name: str = DEFAULT_WORKSPACE_NAME) -> UploadSessionStatus
Get the status of an upload session.
Arguments:
session_id
: ID of the upload session to get the status for.api_key
: deepset API key to use for authentication.api_url
: API URL to use for authentication.workspace_name
: Name of the workspace to upload the files to.
list_files
def list_files(
api_key: Optional[str] = None,
api_url: Optional[str] = None,
workspace_name: str = DEFAULT_WORKSPACE_NAME,
name: Optional[str] = None,
odata_filter: Optional[str] = None,
batch_size: int = 100,
timeout_s: Optional[int] = None) -> Generator[List[File], None, None]
List files in a deepset workspace.
Arguments:
api_key
: deepset API key to use for authentication.api_url
: API URL to use for authentication.workspace_name
: Name of the workspace to list the files from. It uses the workspace from the .ENV file by default.name
: Name of the file to odata_filter for.odata_filter
: odata_filter to apply to the file list. For example,odata_filter="category eq 'news'"
lists files with metadata:batch_size
: Batch size to use for the file list.timeout_s
: Timeout in seconds for the API requests.
list_upload_sessions
def list_upload_sessions(
api_key: Optional[str] = None,
api_url: Optional[str] = None,
workspace_name: str = DEFAULT_WORKSPACE_NAME,
is_expired: Optional[bool] = False,
batch_size: int = 100,
timeout_s: Optional[int] = None
) -> Generator[List[UploadSessionDetail], None, None]
List the details of all upload sessions, including the closed ones.
Arguments:
api_key
: deepset API key to use for authentication.api_url
: API URL to use for authentication.workspace_name
: Name of the workspace whose sessions you want to list. It uses the workspace from the .ENV file by default.is_expired
: Lists expired sessions.batch_size
: Batch size to use for the session list.timeout_s
: Timeout in seconds for the API request.
Module pipeline_client
Sync pipeline client for importing pipelines and indexes to deepset AI Platform.
PipelineClient
Sync client for importing Haystack pipelines and indexes to deepset AI platform.
Example for importing a Haystack pipeline or index to deepset AI platform:
from deepset_cloud_sdk import (
PipelineClient,
PipelineConfig,
PipelineInputs,
PipelineOutputs,
IndexConfig,
IndexInputs,
)
from haystack import Pipeline
# Initialize the client with configuration from environment variables (after running `deepset-cloud login`)
client = PipelineClient()
# or initialize the client with explicit configuration
client = PipelineClient(
api_key="your-api-key",
workspace_name="your-workspace",
api_url="https://api.cloud.deepset.ai/api/v1"
)
# Configure your pipeline
pipeline = Pipeline()
# Configure import
# if importing a pipeline, use PipelineConfig
config = PipelineConfig(
name="my-pipeline",
inputs=PipelineInputs(
query=["prompt_builder.query"],
filters=["bm25_retriever.filters", "embedding_retriever.filters"],
),
outputs=PipelineOutputs(
answers="answers_builder.answers",
documents="ranker.documents",
),
strict_validation=False, # Fail on validation errors (default: False, warnings only)
overwrite=False, # Overwrite existing pipelines with the same name. If True, creates if it doesn't exist (default: False)
)
# if importing an index, use IndexConfig
config = IndexConfig(
name="my-index",
inputs=IndexInputs(files=["file_type_router.sources"]),
strict_validation=False, # Fail on validation errors (default: False, warnings only)
overwrite=False, # Overwrite existing indexes with the same name. If True, creates if it doesn't exist (default: False)
)
# sync execution
client.import_into_deepset(pipeline, config)
PipelineClient.__init__
def __init__(api_key: str | None = None,
workspace_name: str | None = None,
api_url: str | None = None) -> None
Initialize the Pipeline Client.
The client can be configured in two ways:
- Using environment variables (recommended):
-
Run
deepset-cloud login
to set up the following environment variables:API_KEY
: Your deepset AI platform API keyAPI_URL
: The URL of the deepset AI platform APIDEFAULT_WORKSPACE_NAME
: The workspace name to use.
-
Using explicit parameters:
- Provide the values directly to this constructor
- Any missing parameters will fall back to environment variables
Arguments:
api_key
: Your deepset AI platform API key. Falls back toAPI_KEY
environment variable.workspace_name
: The workspace to use. Falls back toDEFAULT_WORKSPACE_NAME
environment variable.api_url
: The URL of the deepset AI platform API. Falls back toAPI_URL
environment variable.
Raises:
ValueError
: If no api key or workspace name is provided andAPI_KEY
orDEFAULT_WORKSPACE_NAME
is not set in the environment.
PipelineClient.import_into_deepset
Import a Haystack Pipeline
or AsyncPipeline
into deepset AI Platform synchronously.
The pipeline must be imported as either an index or a pipeline: - An index: Processes files and stores them in a document store, making them available for pipelines to search. - A pipeline: For other use cases, for example, searching through documents stored by index pipelines.
Arguments:
pipeline
: The HaystackPipeline
orAsyncPipeline
to import.config
: Configuration for importing into deepset, use eitherIndexConfig
orPipelineConfig
. If importing an index, the config argument is expected to be of typeIndexConfig
, if importing a pipeline, the config argument is expected to be of typePipelineConfig
.